与此同时,要达到洲际射程,导弹助推器必须多级串联却又不能采用外挂助推器技术,这对发动机推力和燃料利用效率提出了很高要求,在界面绝热、燃烧稳定性等环节,稍微处理不好都会导致灾难性事故。
更为关键的是洲际导弹的“大脑”——制导系统。洲际导弹在飞行过程中热力环境严酷、电磁环境复杂,对制导系统的可靠性要求非常严格。可以说,高精度的制导技术是洲际导弹具备真正打击效能的关键,需要深入的系统研究和技术储备。
此外,导弹隐身、诱饵、抗干扰等突破导弹防御系统的能力,搭载核弹头的能力以及弹头再入大气层的防护技术等,都是研发洲际导弹必须跨越的技术门槛。
威慑意义无可替代
面对威力巨大却从未用于实战的洲际导弹,有一种观点不容忽视:既然最近几次局部战争中都是巡航导弹等精确制导武器“唱主角”,那么,多国致力洲际导弹研发的意义究竟何在呢?
这与洲际导弹的“个体魅力”密不可分。首先,在攻击距离、威慑效果和快速大规模杀伤等方面,巡航导弹等精确制导武器均无法与洲际导弹比拟;其次,研发洲际导弹是国家经济实力和工业水平的重要标志,是大国地位的象征,加入“洲际导弹俱乐部”有利于增强民众自豪感,提高在国际事务中的话语权。
此外,由于洲际导弹涉及材料、化工、机械、电子、核物理等诸多门类的科学技术,其研发过程还可以提高本国的基础工业综合水平……因此,尽管已“年过半百”,洲际导弹仍然是不少国家孜孜以求的“香饽饽”。
而且,随着科技发展和作战样式变革,洲际导弹也需要不断进化完善。比如,应用高性能速燃发动机,缩短导弹飞出大气层的时间,提高生存能力;通过全程变轨技术,实现在飞行中段、再入段等各阶段均可改变弹道,增强自我防护能力;弹头采用固定或折叠的翼和舵,利用大气层边缘的稀薄气体滑行,从而具备大范围的横向机动和纵向跳跃飞行能力,使导弹防御系统更加难以应对……
可以预见,在未来相当长的一个时期内,洲际导弹独特的战略威慑意义仍无可替代。
延伸阅读
洲际导弹断代史
■高建栋孙旭东刘海春
第一代:液体燃料单弹头
第一代洲际导弹主要是指上世纪50年代末苏联研制成的SS-6系列导弹,以及美国的“宇宙神”“大力神”等系列导弹。它们实现了洲际导弹从无到有的跨越,但技术性能较差。这些导弹主要采用液体燃料,发射前需要很长时间加注准备且不易贮存,最大起飞重量可达122吨。导弹装载的单弹头最大威力相当于500万吨TNT当量,但精度较低,圆概率误差近10公里。
第二代:固体推进增射程
就武器装备发展而言,弥补了上一代的弊病往往就会是下一代的亮点,洲际导弹也不例外。针对第一代洲际导弹使用液体燃料射程短、自重大、反应时间长等缺点,美国“大力神Ⅱ”“民兵Ⅰ”“民兵Ⅱ”以及苏联SS-7、SS-8等导弹都改为固体燃料推进,最大起飞重量减小至80吨,射程却增加至1.1万公里,命中精度提高到了百米级,导弹的发射地点也逐步从地上塔架转入地下发射井。这一阶段,洲际导弹搭载的核弹头开始加装突防装置,其命中精度、威力、实用性和可靠性都有所提高。
第三代:集束式弹头突防强
矛与盾总是共生的。随着洲际导弹的发展,到了上世纪70年代,导弹防御系统也雏形初现——为此,第三代洲际导弹开始在增强突防能力上“做文章”。苏联的SS-9系列、SS-11系列和美国的“民兵Ⅲ”系列导弹都普遍采用了集束式多弹头。当导弹搭载这种弹头飞至预定地点时,可在打开弹头母舱的同时释放出多个子弹头,共同攻击目标。与单弹头相比,这种集束式多弹头可有效提高洲际导弹的突防能力,增强对地面目标的毁伤效果。
第四代:分导弹头“一打多”
集束式多弹头诞生后不久,人们就发现了它的不足:子弹头多靠惯性飞行,精度低、消耗大,且不宜打击点目标。为此,从上世纪70年代开始,美苏两国开始研制分导式多弹头。与集束式多弹头一次释放多个子弹头不同,分导式多弹头的弹头母舱可以按预定程序逐个释放子弹头,并使其分别导向目标,从而可精确攻击相隔一定距离的数个目标或集中攻击同一目标。美国的“潘兴Ⅱ”以及苏联的SS-17、SS-18、SS-19、SS-20等导弹都是分导式多弹头的代表。随着精确制导技术的发展,这些导弹的精度大幅提高,圆概率误差降至百米以内。
第五代:更小巧,更精悍
随着导弹防御系统越来越坚固,当洲际导弹发展到第五代时,讲究的已经不再是威力和射程,而是生存力和突防力。各国洲际导弹竞相朝着小型化、可车载机动发射以及水下潜射等方向发展。在这方面,俄罗斯人似乎领先一步,他们已发展出陆基的“白杨-M”“亚尔斯”,潜射型的“布拉瓦”“蓝天”等多型第五代战略核导弹。美国人也不甘落后,研制出了可铁路机动发射的“和平卫士”洲际导弹,以及可采用轮式机动车作为发射平台的“侏儒”系列导弹。相比前几代洲际导弹,这些导弹的威力虽有所减小,但突防能力却不断增强,而且精度越来越高,甚至可以直接攻击对方的导弹发射井。